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Planck units are part of a unit system called "natural". The names of these units have been 

given in honor of Max Karl Ernst Planck and in recognition of his services rendered to the 
advancement of Physics by his discovery of energy quanta. 

 

These units are usually given from the basic physical constants, such as the Planck 
constant h, the speed of light in vacuum c, the universal gravitational constant G, 

Boltzmann's constant kB, and the permittivity of vacuum  0. 
 
We will see that besides being a useful unit system, Planck units always represent a 

physical reality in which a physical parameter is optimized. We will also see that it is 

possible to calculate more precisely the units using other physical constants that are not 
commonly used to describe these units. 
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1. INTRODUCTION 

 

Planck units may seem to be the result of a numerology exercise where we put 

together different basic physics constants to obtain values with units that we were 

looking for. But its is not the case. Planck units all stem from the fact that our 

universe is quantum. They can be deduced from the Heisenberg uncertainty 

principle, which says that it is not possible to know precisely and simultaneously 

the position and the speed of an object. The simple act of measuring the speed of 

an object disturb its position and vice versa. 

 

Even if on our scale the space-time continuum of the universe seems to be 

continuous, its different properties are actually made of tiny "steps". This 

quantification applies to the time, distances, masses, the energy, etc. 

 

Planck units simplify several physics equations removing conversion factors. 

Here are some examples (to the left, the basic equations and to the right, the 

equations shown in Planck units) : 

 

The Newton's equation of the universal gravitation becomes: 
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The Einstein's equation of the energy (from the special relativity) 

becomes: 

m         2 =→= EcmE  
(2) 

The Coulomb's law equation becomes: 
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And so on... 

 

One of the characteristics of the Planck units is that they can all be defined as a 

function of one or many of the following constants : 

 - Speed of light in vacuum c - Planck constant  ħ 

 - Universal gravitational constant G - Boltzmann constant kb 
 - Permittivity of the vacuum 0 - Permeability of the vacuum 0 

 

The fact that Planck units are physical limits dictated by the Heisenberg 

uncertainty principle ensures that all Planck units, basic or secondary, actually 

represent physical limits or characteristics for which certain parameters are 

optimized. 

 

The basic Planck units are the Planck time tp , the Planck length lp, the Planck mp, 

mass Tp and the Planck charge qp. However, many other secondary units may 

come from these one. 

 

In this document, we will focus to accurately determine the following Planck 

units while mentioning how they can represent reality: 

 - The Planck time tp 

 

- The Planck pressure pp 

  - The Planck length lp 

 

- The Planck energy Ep 

  - The Planck mass mp 

 
- The Planck power p 

  - The Planck temperature Tp 

 

- The Planck tension Vp 

  - The Planck charge qp 

 

- The Planck impedance Zp 

  - The Planck angular frequency p 

 

- The Planck surface sp 

  - The Planck force Fp 

 

- The Planck volume vp 

  

Let's note that obtaining new equations proposed in this document is made 

possible due to the work that we have done before and that allowed us to 

determine more accurately the universal gravitational constant G. 
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2. DEVELOPPEMENT 

 

2.1. The Planck Time tp 

 

The Planck time is a time unit called "natural" because it only depends on known 

constants as the gravitational constant G, the Planck constant h and the speed of 

light c. However, the Planck time is not only a unit used to measure time. Unlike 

conventional units of time (e.g. seconds), the Planck time is not chosen 

arbitrarily. It has an intrinsic physical meaning. 

 

In this document, we want to show, among others, where this unit comes from 

and above all, what it actually means. Then we will use these calculations to 

determine other Planck units. To do this, we will first demonstrate the origin of 

the Planck time equation. 

 

Heisenberg enunciated for the first time, in 1927, the uncertainty principle, which 

is now one of the foundations of quantum mechanics. This principle says that it is 

not possible to accurately determine the speed and position of an object 

simultaneously. 

 

In a second statement, Heisenberg teaches us that the uncertainty, in the 

measurement of the energy of a body, is inversely proportional to the duration of 

the measurement. Another way to formulate this statement is to say that the 

energy product E by the time t must be: 

2


 tE  

(4) 

According to the CODATA 2010 [1], the value of the Planck constant is given by 

h  6.62606957(29) x 10-34 Joules. The reduced Planck constant is denoted 

ħ = h / 2 . 

 

For a mass at rest m0, the energy is [12,13]:  
2

0 cmE =  (5) 

According to the CODATA 2010 [1], the speed of light in vacuum is given by 

c  299792458 m/s. 

 

Considering only the case where t is the smallest possible amount of time, we 

re-baptize t by tp and we keep only the equality in (4). 
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Then, isolating tp , we obtain: 

2
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(6) 

Now, let's suppose that we take a photon at rest with a mass m0, which is at an 

infinite position, and let's suppose that we confine this photon in a sphere of 

radius r. The potential energy variation Ep that would be used up would be: 
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Here, G is the universal gravitational constant.  

 

Choosing r so that the potential energy variation Ep corresponds to half E, we 

obtain the following special case: 
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If we isolate r, we get exactly what we call the Schwarzschild radius: 
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This is a black hole radius. For this radius, the speed of light becomes zero. 

Isolating m0, we get: 
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Using (10) in (6), we obtain: 
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But the value of r may be obtained by the following relation: 

ptcr =  (12) 

According to the equations (11) and (12), the Planck time tp is defined by: 
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This equation allows to calculate the smallest measurable unit of time.  

 

According to the CODATA 2010 [1], the value of the Planck time is given by 

tp  5.39106(32) x 10-44 s. 

 

The biggest uncertainty in the value of the Planck time tp is the value of the 

gravitational constant G, which is extremely difficult to measure. To measure this 
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constant, physicists currently use a torsion balance invented by Cavendish. 

 

To build a torsion balance of Cavendish, a small conductive wire is suspended 

from the ceiling of a distant metal support (to avoid gravitational interactions). In 

this balance, everything is made of metal or of conductive materials to conduct 

electrical charges to ground. This ploy meant to avoid the accumulation of 

electrical charges that could skew the data by creating an electric field. On the 

wire is suspended a conductive horizontal bar. At the end thereof are mounted 

two identical metal masses. These masses are as big as possible while avoiding 

breaking the suspension wire. Two other fixed masses mounted on a metal 

support are inserted at a given time. The masses that are suspended on the wire 

then move toward the other masses which are mounted on the frame. The 

rotational movement of the masses around the rotation axis which is made of the 

wire hanger stops when the attraction force between the masses is equal to the 

torsional force of the wire. This torque reacts exactly like a weak spring. 

Knowing the constant of this spring and knowing the angle of rotation of the 

masses, we deduce the gravitational force between the masses. Knowing the 

value of the masses, we deduce the value of the universal gravitational constant in 

the Newton equation. 

 

Although the equations of Einstein's general relativity are more accurate than 

Newton's one to calculate and predict the trajectories of moving masses, the 

equation of Newton's theory on the gravitation of masses is considered infinitely 

precise for static forces. Even Einstein's equations are calibrated using Newton's 

equation for static forces. Just as Newton's equation, the equations of Einstein's 

general relativity are using the universal gravitation constant G. 

 

In a Cavendish torsion balance, to avoid the wire hanger to break because of the 

mass weight, the masses involved are relatively small. Even the external masses 

are forced to be limited by the physical limits. Of course, the masses are made of 

noble and stable metals (to avoid mass variation over time) with a high density. 

Due to the low masses involved, the forces generated remain extremely weak. 

They are difficult to measure accurately, even being extremely cautious. External 

influences can easily interfere with the balance. For example, the internal 

vibrations of the Earth (earthquakes, traffic and others), ambient lighting (photons 

can create an involuntary thrust), room temperature (that can change the torsion 

constant of the wire), the position of Earth, Moon and Sun (which can create 

additional forces or counter-forces), etc. In short, even with all the minutiae of the 

world, it is practically impossible to be in control of all the parameters involved. 

 

In recent years, the office of weights and measures (Bureau des poids et mesures) 
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attempts to calibrate all measuring units with reference to the speed of light in 

vacuum which is easily repeatable and measurable with high precision thanks to 

lasers. According to the postulates of relativity, the speed of light is invariant in 

time. According to our work, we know that this is not entirely true and that the 

light undergoes a slight acceleration over time. However, despite this, if we could 

guarantee the accuracy of any mass with the same resolution as that of the speed 

of light, it would represent a major breakthrough in the world of metrology. 

 

Despite all the standardization efforts, like for the units of time and distance, the 

definition of mass can not (for now) be related to the speed of light in vacuum. 

For this reason, the definition of the mass has not improved much over years. We 

still use a standard that is deteriorating year after year by losing mass due to 

radioactive isotopes that comprise it and because of the comparison and cleaning 

manipulations that are made from time to time. The standard kilogram is 

deteriorating and limits the accuracy of measurements. It is not easily comparable 

and the repeatability of secondary standards is seriously flawed. 

 

In previous work [11], we found an equation that gives the value of the universal 

gravitational constant G as a function of physics constants with a similar accuracy 

than the speed of light in vacuum. 
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According to the CODATA 2010 [1]: 

• Universal gravitational constant G  6.67384(80) x 10-11 m3/(kgs2) 

• Speed of light in vacuum c  299792458 m/s 

• Classical radius of the electron re  2.8179403267(27) x 10-15 m 

• Mass of the electron me  9.10938291(40) x 10-31 m 

• Fine structure constant   7.2973525698(24) x 10-3 

 

The value of  is an irrational number. It gives the ratio between the expansion 

speed of the material universe and the speed of light in vacuum c [10]: 

76.053 −=  
(15) 

To obtain a better accuracy, let's try to express the equation (13) without using 

the gravitational constant G and the Planck constant h. 

 

The Compton radius rc may be calculated from the following equality between 

the energy contained in the rest mass of the electron and the wave that is 

associated with it: 
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The Compton radius may be described as a function of the classical radius of the 

electron re and of the fine structure constant : 

c
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e
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Using the equations (14), (15) and (16) in the equation (13), we obtain: 
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This equation is 1200 time more precise than the value of the CODATA 2010 [1] 

value. 

 

Since the Planck time tp comes from the Heisenberg uncertainty principle that 

uses the least measurable amount of energy, the Planck time then represents the 

smallest measurable unit of time. Time is slipping away with blows of steps that 

accumulate. All time variations are necessarily an integer multiple of the Planck 

time tp. 

 

It is interesting to note, without trying to demonstrate it here, that the Planck time 

tp can be described in terms of the apparent age of the universe and of the fine 

structure constant: 

57
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(19) 

We should know that the apparent age of the universe [2] Tu is equal to the 

inverse of the Hubble constant H0 [9] . 
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(20) 

In previous work, we showed that the Hubble constant may be accurately 

determined using the following equation [11,14]: 
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This value is partly checked by the of Wang Xiaofeng team [15] who measured a 

value of H0  72.1 (9) km / (sMParsec). 
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2.2. The Planck Length lp 

 

The Planck length lp is defined by: 

3c

G

p
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p
l
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(22) 

According to the CODATA 2010 [1], the value of the Planck length is given by 

lp  1.616199(97) x 10-35 m. 

 

In equation (22), the speed of light c represents an unsurpassable upper limit 

according to the postulates of the relativity. The Planck time tp is the smallest 

measurable unit of time. Therefore, the Planck length lp represents the smallest 

unit of length that a photon can pass while being measurable. A photon that 

travels in space will move forward by steps of equal to the Planck length 

distance. All routes through space are actually an integer multiple of the Planck 

length lp. 

 

For better accuracy in the evaluation of the Planck length lp, let's try to express 

the equation (22) without using the gravitational constant G and without the 

Planck constant h. 

 

Using the equations (14), (15) and (16) in the equation (22), we obtain: 
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This equation is 18000 times more accurate than the CODATA 2010 value [1]. 

 

It is interesting to note, without trying to demonstrate it here, that the Planck 

length lp may be described in terms of the apparent radius of curvature of the 

universe Ru and of the fine structure constant: 
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2.3. The Planck Mass mp 

 

The Planck mass mp is the mass of a particle when it reaches its highest energy 

level. This property stems from the wave-particle duality of matter. 

 

From a corpuscular point of view, the energy of a particle of mass mp can be 
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given by the equation of Einstein's relativity: 

2c
p

mE =  
(25) 

From a wave standpoint, the energy of a wave with a wavelength equal to 2lp is 

given by the following equation: 
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By  making equal the two last equations, we get: 
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If we replace lp by the equation (22) and that we isolate mp , we obtain the 

equation that is described in the CODATA 2010 [1] for the Planck mass mp is 

defined by: 
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(28) 

Since this equation is obtained from the smallest possible wavelength (see 

equation (26)), we conclude that this equation represents the highest possible 

energy level for a particle. Therefore, mp which comes from the equality of this 

equation with the equation (25), necessarily represent the largest possible mass 

for a particle. 

 

It is interesting to note that the Planck mass mp also corresponds to the geometric 

mean between the largest existing mass (the apparent mass of the universe mu) 

and the smallest existing mass (the mass mph that is associated to the photon that 

has the largest wavelength and that has the apparent diameter of the universe 

2Ru). 

 

The apparent mass of the universe mu is given by [3,4]: 
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The mass mph of a photon with a wavelength 2Ru is given by the following 

equation: 
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The apparent radius of curvature of the universe Ru (which may bear various 

name in different documents) is given by the following equation [5,6,7,8] : 
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(31) 

Using equations (28) to (31), it is possible to show that the geometric mean 

between the apparent mass of the universe mu and the mass associated with the 

lightest photon mph gives exactly the Planck mass mp: 

ph
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(32) 

It is possible to define more accurately the Planck mass mp than the equation (28) 

using equations (14), (15) and (16) into equation (22): 
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(33) 

This value is 1300 times more accurate than the CODATA 2010 [1] one. 

 

 

2.4. The Planck Temperature Tp 

 

The Planck mass mp corresponds to the highest energy level possible for a particle 

that we can meet. Therefore, when the energy of such a particle is converted into 

pure energy, the recorded temperature is then the highest that it is possible to 

obtain in the universe. 

 

The energy E contained in a particle having the Planck mass mp is given by the 

mass-energy conversion equation of Einstein: 
2cmpE =  (34) 

Similarly, the energy E contained in a particle having a temperature Tp is given 

by: 

pb TkE =  (35) 

By doing the equality and isolating Tp, we obtain the Planck temperature Tp that 

can be redefined as follows using equation (28): 
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It is possible to define the Planck temperature more accurately using the 

equations (14), (15) and (16) into equation (36). We then get: 
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This value is 65 times more accurate than the CODATA 2010 [1] one. 

 

 

2.5. The Planck Charge qp 

 

Let's begin by showing where the Planck charge comes from to show that it 

corresponds to the highest charge that a particle may have. 

 

Again, the energy E contained in a particle having the Planck mass mp is given by 

the mass-energy conversion equation of Einstein: 
2cmpE =  (38) 

We may consider that all the kinetic energy contained in the mass of the particle 

comes from the electrostatic energy E contained in a point-like particle that has a 

Planck length lp radius and a charge qp. This energy is given by the following 

equation: 
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(39) 

By doing the equality between the equations (38) and (39) and isolating the 

Planck charge qp, we obtain: 
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(40) 

The speed of light is defined as a function of the permeability 0 of  the vacuum 

and the permittivity 0 of the vacuum as follows: 
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It is thus possible to rewrite the equation (40) using the equation (41): 
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Using equations (22) and (28) into the equation (42) we obtain the Planck charge 

qp according to Planck constant h: 
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(43) 

Let's note that due to the fact that the Planck charge is described here using the 

Planck mass mp and the Planck length lp which both correspond to extremes, we 

conclude that the Planck charge qp is the maximum charge that can be measured 

for a particle. 

 

Now, if we use the equation (41) in the equation (43), we obtain: 
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It is interesting to note, without trying to demonstrate it here that it is also 

possible to describe the Planck charge based on the apparent mass of the 

universe mu and its apparent radius of curvature Ru: 
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The electron charge qe can be defined as a function of the mass of the electron 

me , the classical radius of the electron re and the permeability of the vacuum µ0: 
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It is possible to define the Planck charge equally precisely in (44) by defining 

from the electron charge qe , the mass of the electron me , classical radius of the 

electron re , of the fine structure constant α and the permeability of vacuum µ0 

using equations (14), (15),  (16) and (46) into equation (42). We then get: 
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2.6. The Planck Angular Frequency p 

 

The Planck angular frequency p is defined by: 
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Since the Planck angular frequency p is the inverse of the Planck time tp which 
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is the smallest possible unit of time, thus p it represents the maximal angular 

frequency that a particle may have when it reaches its highest energy level, that is 

to say, when a particle of radius equal to the Planck length lp spins so fast that the 

periphery speed of the particle reaches the speed of light c. 

 

It is interesting to note, without trying to demonstrate it here that the Planck 

angular frequency p can be described in terms of the apparent age of the 

universe you and of the fine structure constant. 
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It is possible to define the Planck angular frequency more accurately by defining 

it from the speed of light in the vacuum c, the classical radius of the electron re , 

from the fine structure constant α and the  factor using the equations (14), (15) 

and (16): 
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2.7. The Planck Force Fp 

 

The Planck force Fp is defined by: 
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Due to the fact that we use the Planck mass mp and the Planck time tp to describe 

this force, the Planck force Fp corresponds to the greatest force that may be 

applied on an object. 

 

This evaluation of the Planck force is not very accurate due to the fact that it uses 

the gravitational constant as defined in the CODATA 2010 [1]. 

 

It is interesting to note, without trying to demonstrate here that the force of 

Planck Fp is equal to the force required to accelerate the apparent mass of the 

universe mu over a distance equal to the apparent radius of curvature of the 

universe Ru for a period of time equal to the apparent age of the universe Tu. By 

using Newton's equation F = ma (where m is the mass in kg of the object and its 

acceleration in m/s2), we obtain: 
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Since the apparent mass of the universe mu , the apparent radius of the universe 

Ru and the apparent age of the universe Tu are undoubtedly the greatest values 

being for these measurement units, we conclude again that the Planck force Fp is 

the greatest force that can be applied to an object. 

 

Let’s recall that the apparent age of the universe Tu is given by the inverse of the 

Hubble constant H0: 

s
17

10(27)4.27998719MParsec)km/(s )46(09548632.72
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=
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T  

(53) 

It is possible to define the Planck force Fp more accurately by defining it from the 

mass of the electron me , the classical electron radius re , the fine structure 

constant α and  using equations (14), (15) and (16) into equation (51): 
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2.8. The Planck Pressure pp 

 

The Planck pressure pp is defined by: 

2
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(55) 

Since it stems from the greatest force applied on the smallest surface, this 

pressure is the biggest pressure that can be exerted on a particle. 

 

It is interesting to note, without trying to demonstrate it here that the Planck 

pressure pp is also equal to the pressure would exert the mass of the universe if it 

had accelerated over a distance equal to the apparent radius of curvature of the 

universe Ru for a period of time equal to the apparent age of the universe Tu and 

that this equivalent force was applied on a square surface with sides equal to the 

Planck length lp. 
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(56) 

It is possible to define the Planck pressure pp more accurately by defining it from 

the mass of the electron me , the classical radius of the electron re , the fine 

structure constant α and  using the equations (14), (15) and (16) into 

equation (55): 
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(57) 

 

 

2.9. The Planck Energy Ep 

 

The Planck energy Ep is defined by: 

J 
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(58) 

This energy corresponds to the maximum energy level that may have a particle. 

Indeed, the ultimate mass for a particle is the Planck mass mp, and the speed of 

light in vacuum c represents the upper speed limit. 

 

It is interesting to note, without trying to demonstrate it here that the Planck 

energy Ep is also equal to the energy that would dissipate the mass mu of the 

entire universe if it were converted into pure energy by the Einstein's equation of 

the special relativity multiplied by the ratio between the Planck length l and the 

apparent radius of curvature of the universe Ru. 

u

p
u

R

l
cm

p
E = 2

 
(59) 

It is possible to define the Planck energy Ep more accurately by defining it from 

the mass of the electron me , the classical radius of the electron re , the fine 

structure constant α and the  factor using the equations (14), (15) and (16) into 

equation (58): 

J910)86(95623831.1
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(60) 
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2.10. The Planck Power Pp 

 

The Planck Power Pp is defined by: 

 W
52

10)43(62850.3
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==
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p
t

p
E

p
P  

(61) 

Since the Planck power is described as a function of the Planck energy 

representing a maximum energy level for a particle and as a function of the 

Planck time that is the smallest unit of time, the Planck power is the greatest 

power that can be delivered. 

 

It is interesting to note, without trying to demonstrate it here that the Planck 

power can be obtained as a function of the apparent mass of the universe mu and 

as a function of the apparent age of the universe Tu (thus depending on the inverse 

of the Hubble constant H0): 
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
=  

(62) 

It is possible to define the Planck power Pp more accurately by defining it from 

the mass of the electron me , the classical radius of the electron re , the fine 

structure constant α and the  factor using the equations (14), (15) and (16) into 

the equation (61). 
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2.11. The Planck Density p 

 

The Planck density p is defined by: 

3
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(64) 

Since the Planck density p is defined according to the Planck mass mp , which is 

the largest mass that is available for a particle and that this density is obtained for 

a cube having edges equal to the Planck length lp , we conclude that the Planck 

density p corresponds to the greatest density possible in the universe. 
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It is interesting to note, without trying to demonstrate it here, that the Planck 

density can be described as a function of the apparent mass of the universe mu and 

as a function of the apparent radius of curvature of the universe Ru: 

572
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(65) 

It is possible to define the Planck density p more accurately by defining it from 

the mass of the electron me  , classical radius of the electron re , the fine structure 

constant α and the  factor using the equations (14), (15) et (16) into the 

equation (64). 
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2.12. The Planck Current Ip 

 

The Planck current Ip is defined by: 
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(67) 

It is interesting to note, without trying to demonstrate it here that it is also 

possible to describe the Planck current Ip as a function of the apparent mass of the 

universe mu , its apparent radius of curvature Ru and the apparent age of the 

universe Tu (which corresponds to the inverse of the Hubble constant H0): 
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(68) 

Again, without trying to demonstrate it here, the Planck current Ip may also be 

described as a function of the charge of the electron qe ,  the apparent age of the 

universe Tu (therefore from the inverse of the Hubble constant H0) and the fine 

structure constant : 
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(69) 
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It is possible to define the Planck current Ip more accurately than in (67) by 

defining it from the mass of the electron me , the classical radius of the 

electron re , the permeability of vacuum µ0 , the ratio  and the fine structure 

constant α using the equations (14), (15) and (16). We then get: 
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(70) 

It is also possible to define the Planck current Ip as a function of the charge of the 

electron qe , the classical radius of the electron re and the fine structure constant α. 

We then get: 
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2.13. The Planck Tension Vp 

 

The Planck tension Vp is defined (using CODATA 2010 constants) by: 
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It is interesting to note, without trying to demonstrate it here that it is also 

possible to describe the Planck tension Vp as a function of the apparent mass of 

the universe mu , its apparent radius of curvature Ru and the apparent age of the 

universe Tu (which corresponds to the inverse of the Hubble constant H0): 
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(73) 

Again, without trying to demonstrate here, the Planck voltage Vp may also be 

described as a function of the mass of the universe mu , the charge of the 

electron qe and fine structure constant : 

e
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m
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=  

(74) 

It is possible to describe the Planck voltage Vp  more accurately than in (72), by 

defining it as a function of the mass of the electron me , the classical radius of the 

electron re and the fine structure constant α using the equations (14), (15) and 

(16). We then get: 
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(75) 

It is also possible to define the Planck voltage Vp as a function of the charge of 

the electron qe, classical electron radius re , the permittivity of vacuum 0 and fine 

structure constant α using the equations (14), (15) and (16). We then get: 
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2.14. The Planck Impedance Zp 

 

The Planck impedance Zp is defined by: 

=
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(77) 

Curiously, this also corresponds to the impedance of transmission cables for 

which it is possible to drive through a maximum power. But, this is not the 

impedance for which the losses are the smallest (which are around 77  (hence 

the 75  standard coaxial cables for television). The 50  impedance for 

telecommunication cables is a good compromise between the maximum power 

that can be driven through with a minimum loss. In fact, the arithmetic mean 

between the Planck impedance and the impedance giving the minimum loss gives 

approximately 53.5  and the geometric mean gives about 48 . So, the 

standardized 50  impedance represents a good compromise. 

 

Since the Planck impedance does not depend on the gravitational constant but it 

only depends on 0 and c, it is considered accurate. It can not therefore be defined 

more accurately than the equation (77). 

 

 

2.15. The Planck Surface sp 

 

The Planck surface sp is defined by: 
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(78) 

According to the CODATA 2010 [1], the value of the Planck length is given by 

lp  1.616199(97) x 10-35 m. 

 

In the equation (78), the Planck length lp represents the smallest length unit that a 

photon may pass while being measurable. Therefore, the Planck surface is the 

smallest measurable unit of area. 

 

It is interesting to note, without trying to demonstrate it here, that the Planck 

surface sp can be described in terms of the apparent radius of curvature of the 

universe Ru and fine structure constant : 
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(79) 

For a better accuracy in the evaluation of the Planck surface sp ,  let's try to 

express the equation (78) without using the gravitational constant G and without 

the Planck constant h. 

 

Using the equations (14), (15) and (16) in the equation (78), we get: 
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2.16. The Planck Volume vp 

 

The Planck volume vp is defined by: 
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(81) 

According to the CODATA 2010 [1], the value of the Planck length is given by 

lp  1.616199(97) x 10-35 m. 

 

In equation (81), the Planck length lp is the smallest unit of length that a photon 

may pass while being measurable. Therefore, the Planck volume represents the 

smallest unit of measurable volume. 

 

It is interesting to note, without trying to demonstrate it here, that the Planck 
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volume vp may be described as a function of the apparent radius of curvature of 

the universe Ru and the fine structure constant : 
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(82) 

For a better accuracy in measuring the Planck volume vp , let's try to express the 

equation (81) without using the gravitational constant G and without the Planck 

constant h. 

 

Using the equations (14), (15) and (16) in the equation (81), we get: 
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(83) 

 

 

3. CONCLUSION 

 

The Planck units that we have listed all correspond to a physical limit or a 

parameter that is optimized. 

 

We have listed several equations showing a close relationship between the Planck 

units and the different parameters of our universe whose constant  that comes 

directly from our model of the universe [10]. Without this constant, we probably 

could not find more accurate equations for Planck units than the existing one. 

 

Thanks to our work on the universal gravitational constant G, it is possible to 

improve the value of certain Planck units by redefining them based on the 

characteristics of the electron and fine structure constant . 
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